Air Pollution Social Cost Accounting Toward Optimal Policy Decision Making for Air Quality, Energy, and Climate Change

¹School of Civil and Environmental Engineering at Cornell University, ²Department of Engineering and Public Policy and ³Department of Civil and Environmental Engineering at Carnegie Mellon University

Objectives

- Develop a computationally efficient method that identifies the sources of air pollution and their contributions in high spatial, temporal, and sectoral resolutions.
- Develop a framework that allows employing optimization methods for policy research associated with air quality, energy, and climate change.

1. Background

- Identifying the sources of air pollution that affects the air we breathe is essential for societal decisionmaking.
- However, it is a difficult task because there are innumerable emission sources and air pollutants travel long distance (hundreds of km or more) while they undergo complex chemical reactions.
- Current methods either have limited spatial, temporal, and sectoral resolutions (e.g. receptor models (Hopke and Cohen, 2011)) or require high computational costs (e.g. chemical transport models (ENVIRON, 2015; Byun and Schere, 2006)).
- We need a tool that is computationally efficient but has high spatial, temporal, and sectoral resolutions.

2. Social Cost of Emissions

Fig. 1: A standard (or U.S. EPA's) method of estimating the social costs of emissions. We focus on $PM_{2.5}$ because it accounts for >90% when all the societal effects of emissions are monetized.

3. The Estimating Air pollution Social Impact Using Regression (EASIUR) Model

- the-art CTM (CAMx).

Per-tonne Social Cost [\$/t] = f (Exposed Population, Atmospheric Variables)

4. The Average Plume Method

- to create an average plume: $\sum_{X,V} \text{Weight}_{X,V} = 1.0$
- used to express exposed population in regression: Exposed Population =
- $\sum_{x,y}$ (Wind-Direction-Adjusted Weight_{x,y} × Population_{x,y}) • This method worked great for describing exposed population in EASIUR regressions.

5. The Air Pollution Social Cost Accounting (APSCA) Model

Fig. 5: Emission sources affecting the air pollution social costs imposed on the New York metropolitan area.

Jinhyok Heo¹, Peter J. Adams^{2,3}, Oliver H. Gao¹

• The EASIUR model (Heo, 2015) estimates the social cost of emissions like a state-of-the-art chemical transport model (CTM) but without high computational costs for major air pollutants emitted at three emission elevations (ground-level, 150 m, and 300 m).

Fig. 3: EASIUR's marginal social costs (\$/t) for ground-level emissions.

• A key challenge in EASIUR development was to find a simple but accurate way of describing the size of population exposed to $PM_{2.5}$. • CTM results of 50 sample locations were averaged and normalized

Fig. 4: Average plumes for winter emissions (placed on Pittsburgh to illustrate a sense of scale).

• The key idea of the APSCA model is to distribute EASIUR's social cost estimates spatially using population-weighted average-plumes.

• The APSCA model identifies all the sources for a given downwind (or receptor) location quickly mostly within 0% mean fractional biases_{eq} and 50% mean fractional errors_{eq} against CTM-based estimates for four species (Primary $PM_{2.5}$, SO_2 , NO_x , and NH_3).

Fig. 6: Air pollution social cost accounting estimated by APSCA for 14 metropolitan areas across the nation.

7. Conclusions

- The Air Pollution Social Cost Accounting Model identifies the sources of air quality burden at a receptor location with high spatial, sectoral, and temporal resolutions.
- The most comprehensive accounting of air pollution social costs can be provided.
- The new model provides useful information for policy strategies from a receptor's point of view.

8. Future Work

- combine EASIUR and APSCA with optimization methods for policy research associated with air quality, energy, and climate change.
- evaluate U.S. EPA's air regulations (e.g. State Implementation Plans and the Cross-State Air Pollution Rule).

Acknowledgments

The study was supported by Lloyd's Register Foundation, New York Metropolitan Transportation Council (NYMTC), and Center for Climate and Energy Decision Making (CEDM).

6. Analysis on 14 Metropolitan Areas

